

INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

भारतीय प्रौद्योगिकी संस्थान तिरुपति

1.	Title of the course	Homogeneous Reaction Engineering
2.	Course number	CH301L
3.	Structure of credits	2-1-0-3
4.	Offered to	UG
5.	New course/modification to	Modification To CH3101/12
6.	To be offered by	Department of Chemical Engineering
7.	To take effect from	July 2022
8.	Prerequisite	Nil

- 9. **Course Objective(s):** To determine rate law for a given chemical reaction. To design an ideal reactor using the given rate law for homogeneous reaction(s).
- 10. **Course Content:** Rate law and stoichiometry; Kinetics of homogeneous reactions; Analysis and interpretation of kinetic data from batch reactors; Ideal reactors: continuous stirred tank reactor (CSTR), plug flow reactor (PFR), analysis and design for single reactions; Series, parallel and multiple reactions in ideal reactors; Temperature and pressure effects; Guidelines for choosing optimum reactor system; Residence time distribution (RTD); Non-ideal reactor models.

11. Textbook(s):

- 1. Fogler S H, Elements of Chemical Reaction Engineering, 4th Edition, Prentice Hall India (2015).
- 2. Levenspiel O, Chemical Reaction Engineering, 3rd Edition, Wiley India (1999).

12. Reference(s):

- 1. Davis M E and Davis R J, *Fundamentals of Chemical Reaction Engineering*, 1st Edition, McGraw Hill (2003).
- 2. Doraiswamy L K and Uner D, *Chemical Reaction Engineering: Beyond the Fundamentals*, 1st Edition, CRC Press (2013).
- 3. Froment G F and Bischoff K B, Chemical Reactor Analysis and Design, 2nd Edition, John Wiley & Sons (1990).
- 4. Schmidt L D, *The Engineering of Chemical Reactions*, 2nd Edition, Oxford University Press (2005).