

INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

भारतीय प्रौद्योगिकी संस्थान तिरुपति

1.	Title of the course	Transport Processes
2.	Course number	CH517L
3.	Status of the course	Core
4.	Structure of credits	3-0-0-3
5.	Offered to	PG
6.	New course/modification to	New
7.	To be offered by	Department of Chemical Engineering
8.	To take effect from	July 2023
9.	Prerequisite	СоТ
10.	Whether approved by the Department	Yes
11	Course Objective(s). To develop methometical approach to modelling and colving	

- 11. **Course Objective(s):** To develop mathematical approach to modelling and solving phenomenological transport of momentum, heat and mass in various processes. To apply these principles further for multiphysics problems.
- 12. **Course Content:** Transport equations, analytic methods for the solution of flow, heat and mass transfer problems, approximations based on scaling and asymptotic methods, scaling and nondimensionalization, unidirectional flows, lubrication and thin-film theory, creeping flows, linear stability theory, boundary layer theory, convective heat and mass transport at high and low Reynolds numbers, introduction to multi-phase flow, flow through porous media.

13. Textbook(s):

- 1. Bird R B, Stewart W E and Lightfoot E N, *Transport Phenomena*, 2nd Edition, Wiley India (2006).
- 2. Deen W M, Analysis of Transport Phenomena, 2nd Edition, Oxford University Press (2011).

14. Reference(s):

- 1. Aris R, *Vectors, Tensors and the Basic Equations of Fluid Mechanics*, 1st Edition, Dover Publications Inc (1990).
- 2. Kays W M and Crawford M E, *Convective Heat and Mass Transfer*, 4th Edition, McGraw Hill Education (2005).
- 3. Leal L G, Advanced Transport Phenomena: Fluid Mechanics and Convective Transport Processes, 1st Edition, Cambridge University Press (2010).
- 4. Welty J, Wicks C E, Wilson R E and Rorrer G L, *Fundamentals of Momentum, Heat and Mass Transfer*, 5th Edition, Wiley India (2010).