

INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

भारतीय प्रौद्योगिकी संस्थान तिरुपति

1.	Title of the course	Quantum Mechanics I
2.	Course number	PH510L
3.	Structure of credits	3-1-0-4
4.	Offered to	PG
5.	New course/modification to	Modification To PH5107/10
6.	To be offered by	Department of Physics
7.	To take effect from	July 2022
8.	Prerequisite	Nil

- 9. **Course Objective(s):** To introduce foundational aspects and the basic mathematical framework of quantum mechanics and to discuss the characteristics of simple quantum systems.
- 10. **Course Content:** Uncertainty principle, wave particle duality; Mathematical framework: State vectors and operators in Hilbert space, expectation values; Schrodinger equation, wavefunction and its interpretation; Time evolution in the Schrodinger, Heisenberg and Dirac pictures; Simple quantum systems: 1D potential wells/barriers, tunnelling, linear harmonic oscillator; Central force and angular momentum operator, addition of angular momenta; Symmetries and invariance; Hydrogen atom and SO(3) symmetry; Spin 1/2 systems and SU(2) symmetry; Feynman Path Integrals; Other foundational aspects: measurement, entanglement, EPR paradox and Bell's inequalities, locality problem.

11. Textbook(s):

- 1. Sakurai J J, Modern Quantum Mechanics, Pearson Education India (2013).
- 2. Shankar R, Principles of Quantum Mechanics, Springer India (2010).

12. Reference(s):

- 1. Cohen-Tannoudji C, Diu B and Laloe F, Quantum Mechanics, Wiley-VCH (1992).
- 2. Dirac P A M, The Principles of Quantum Mechanics, Clarendon Press (1981).
- 3. Landau L D and Lifshitz E M, *Quantum Mechanics: Non-Relativistic Theory*, Elsevier India (2004).
- 4. Zettili N, Quantum Mechanics: Concepts and Applications, Wiley (2009).