

## INDIAN INSTITUTE OF TECHNOLOGY TIRUPATI

## भारतीय प्रौद्योगिकी संस्थान तिरुपति

Yerpedu-Venkatagiri Road, Yerpedu Post, Chittoor District, Andhra Pradesh - 517 619

| 1.  | Title of the course                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Basics of Quantum Computing |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 2.  | Course number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | PH515L                      |
| 3.  | Structure of credits (L-T-P-C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3-0-0-3                     |
| 4.  | New course/modification to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | New                         |
| 5.  | To be offered by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Physics                     |
| 6.  | Prerequisite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | СоТ                         |
| 7.  | Course Objective(s): To apply quantum theory to describe concepts in quantum computing such as qubits and entanglement. To discuss concepts of quantum measurement, algorithms, circuits, computers, and information processing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                             |
| 8.  | Course Content: Introduction: linear algebra for matrix mechanics, quantum mechanics, Python 3; Basic Concepts: qubits, one and two-qubit gates, entanglement, measurement; Algorithms: Quantum algorithms, complexity classes, quantum computing software landscape, adiabatic quantum computation; Quantum Computers: Light-matter interactions for a 2-level system, anharmonic simple harmonic oscillator, Jaynes-Cummings Hamiltonian; Quantum Information: Qubit implementation for information processing using cold atoms, molecules, quantum dots, superconducting circuits, trapped-ions, photon, nuclear spin ensemble based on DiVincenzo criteria, state initialization, state determination using tomography, coherence time, gate operations, static qubit to flying qubit, efficiency, and fidelity. |                             |
| 9.  | Textbook(s):  1. Nielsen M A and Chuang I L, Quantum Computation and Quantum Information, Cambridge University Press (2010).  2. Kaye P, Laflamme R, and Mosca M,  An Introduction to Quantum Computing, Oxford University Press (2007).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                             |
| 10. | Reference(s):  1. Aaronson S, Quantum Computing since Democritus, Cambridge University Press (2013).  2. Yanofsky N S and Mannucci M A, Quantum Computing for Computer Scientists, Cambridge University Press (2008).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                             |